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ABSTRACT

This paper surveys contemporary research involving error and

sensitivity analysis approaches useful for the design of aids for

planning and decision support. Discussed are structural sensitivity

considerations as well as the effects of errors, for both single

and multiattribute cases, in estimation or elicitation of probabili-

ties and utilities. One of the major uses for sensivitity analysis

type results is in bounded prioritization of alternatives using

ordinal information. This use of sensitivity analysis is discussed

and illustrated with examv.s.
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1. Introduction

A contemporary effort of much interest is the design of evaluation and

choice making aids for planning and decision support processes. These

adjuvants are sometimes called management information systems; although we

feel that the terms decision support system, or planning and decision support

system, are more appropriate. A central purpose in use of these systems is

not just presentation of information representing facts and values,but the

aggregation of this information to aid in evaluation and choicenakinq,

Research in this area involves many disciplines and perspectives; and thus

we have a large scale systems problem. There are a number of sources of

error in the design of decision analysis algorithms for planning and decision

support systems. We discuss several of these in this paper, namely: errors

in the structure of the decision situation, errors in the elicitation of

probabilities, and errors in the assessment of single and multiple utility

functions. Also, decisionmakers sometimes find it very difficult to provide

precise (cardinal) estimates of weights and find it much less stressful to

provide ordinal values. As shown in Section 4, sensitivity results can

often then be used to infer priorities. We conclude our survey and pre-

sentation with a discussion of some contemporary research needs in this

area.

-1-



2. Sensitivity to Probability Estimation Errors

In decision analysis problems under risk, it is necessary to obtain

an objective or subjective estimate of the probability that various out-

come states will result from decision alternatives. Once a recommended

decision has been established, it is often useful to determine the

magnitude of the changes in the state probabilities required for the

recommended decision to become less desirable than another decision alter-

native. This magnitude, coupled with some knowledge of the quality

of the state probability estimates, can be used to determine how confi-

dent we are in the optimality of the reconmended decision.

We consider the three outcome state case first; then we generalize

these results to the n outcome state case. For convenience, we assume

that the probability associated with each outcome state is independent of

the action alternatives. With alternative a we associate a utility

vector

(u) .[u (2.1)

and we write for the outcome state probability

PT [PI P2  P31 (2.2)

The expected utility of alternative a is then

i T i u I + I 23EU(a ) p u- PiU1 +Ip 2 u2 +p 3 u3  2.3)

Now suppose that the probabilities pi, are perturbed. Since we must maintain

pl + P2 + P3 a 1, Pi >0 (2.4)

we must have

APl + AP2 + AP3 = 0 (2.5)
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By substituting Eq. (2.4) into Eq. (2.3),we see that the equation for

constant expected utility is that of a straight line

EUI ia i +PNi ui i i 26
EU~~a ) * u3 +p( 1 - 3) + p2(u2 -u)(26

in two dimensions, p, and p2. The difference in expected utility for

alternative i and J is some amount A given by

AuJ EU(a1) - EU(aJ) - p,(u' ~ 2 u 4 (2.7)
I -ujP+ 2(ul -uj) +P3(~i- ul3)

Ps long as a > 0 we know that alternative a is preferred to alternative

aJ . The relation AlJ - 0 graphs as a straight line in the pl, P2 plane

if we make use of Eq. (2.4) to eliminate P3. Doing this, however, distorts

the planes of interest somewhat. Fortunately, the three dimensional space

for p,, P2 1 P3 becomes a plane when we associate the constraint of Eq. (2.4)

with this space.

Figure (2.1) indicates a typical probability triangle. It is

straightforward to show that graphs of A*J = 0 are straight lines in Figure 2.1.

For example, the graphs of A=J = 0 for the problem of Table 2.1 are shown

in Figure 2.1.

Outcome States

Alternative x1  x2  x3

a 1.0 0.7 0.5

a 2  0.9 0.6 0.3

a3  0.6 0.9 0.2

a4  0.7 0.8 0.3

a5  0.0 0.0 1.0

Table 2.1 Illustrative Utilities for a Simple Example

Of interest in this figure is the fact that alternative 1 dominates alterna-
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tive 2 in that the utility of each outcome state is greater for alternative 1

than for alternative 2. Further, it is not possible for alternative 4 to be

the best alternative and the optimum decision regions are as shown in Figure 2.2.

For more than three outcome states ,the graphical approach suggested

here is infeasible. Isaacs [l? and Fishburn, Murphy and Isaacs [7] describe

a general approach that is applicable to the n dimensional case.

This approach allows determination of that "second best" alternative which

could become the best alternative due to a minimum overall variation in

probabi 11 ty.

There are, in general, a variety of possible ways in which probability

estimates can be incomplete. Among these are the following t6. 121:

1. The decision maker provides an estimate of the p1

2. The decision maker provides a probability density function, g(p1 ),

for the pi.

3. There exists no information about the p1

4. There exists an ordinal measure, or ordering of the pi. For conven-

ience, and without loss of generality, we may assume that p1 >

P2- ! "' - Pn"

5. There exists bounded internal measures such that each p1 is bounded,

such as ai < P1 I a1 + e1 with a1 > 0, eI > 0.

6. There exists a set of inequalities relating the PI. such ask+l k
E j~ Pi1 p E P

j~l J~l Pj+l

7. Some of the p1 are known whereas others are related by inequalities

of the forms given in (4), (5), or (6).

There exists several ways in which the, possibly partial, information con-

cerning probabilities may be processed to assist in evaluation of the
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alternative courses of action. Among these are:

(a) The estimate of the pi, if provided, may be used to obtain the

subjective expected utility of each alternative a from the
n i

relation E pj uj . A sensitivity analysis similar to that of our

Section 3 may be used to determine the possibility of a decision

switch due to probability elicitation errors.

(b) The expected probability of each event outcome may be computed

from P =I pj g(pj) dPj and the p used in place of the p.

Estimates of subjective expected utility are obtained as in (a) above.

(c) Various dominance relations may be obtained from the ordinal bounds

and bounded interval measures provided by the decision maker.

(d) Various minimum changes for a decision switch may be obtained.

(e) Regions in which various alternatives are best may be determined

and displayed for the decision maker.

Often,various forms of stochastic dominance [27, 28] can be used to

eliminate alternatives from consideration even when there exists little or

no information concerning event outcome probabilities. For case 3, in which

there exists no probability information, alternative j will dominate alter-

native i if uj > u ,with the inequality holding for at least one component

of the utility vector. In component form this becomes uk > Ui, k=l,2... n.

For example,we easily see that alternative 1 dominates alternative 2 for the

alternatives and utilities illustrated in Table 2.1. This may be written

a I a2 .

Further,it is often possible to identify an alternative which may not be

dominated but which is inferior to or dominated by a mixed strategy con-
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sisting of a mass probability FT = [F1 , F2 ,..., Fm ] on the set of

primary alternatives aT = [a1 , a,..., am. If the decision maker
adopts mixed strategy F, then alternative a i is elected with probability

1 1F1 . For the example posed by the data Table 2.1 we see that 0.5 u +

0.5 u3 > u4 J= 1, 2, 3. Thus alternative 4 is dominated by the mixed

strategy FT = [0.5, 0, 0.5, 0, 0]. Consequently we may delete alternative

4 from further consideration for the particular case when mixed strategies can

be considered and when there is no information available concerning the

proDaDilities of event outcomes. It is dominated by the mixed strategy

of choosing alternative 1 with probability 0.5 and alternative 3 with

probability 0.5.

In the general case, with no assessment of probabilities, alternative a
i

is dominated by a mixed strategy F, assuming the probability vector p is the

same for all alternatives, if

FJ uj U' for k = 1, 2, ... , n (2.8)

If there exist an ordinal ranking of probabilities, as in case 4, then

we can easily show that option alternative a is dominated by a mixed

strategy if there exists a mixed strategy F such that

z FJ( 4 uj) > I u' for j = 1, 2,..., m (2.9)
joka l kl k-l k

Unfortunately there does not appear to be any method that is general and

simple to use to determine appropriate mixed strategies. Often, also, the

appropriateness of mixed strategies must be questioned for many applications.

For the case where there exists bounded interval measures in the form

of case 5, then the primary strategy alternative a dominates alternative

aj if

n (E k (uk- uk)I > 0 (2.11)
k - (



where is the minimum value of the objective function for the linear

programming problem
nm.in xj(u - (2.13)

kzl

subject to 0 < xk ek

n nE. Xk I - E a

k=l k=l (2.14)

There appear to be no general formulae for cases 6 and 7 in which there

exists sets of inequalities governing the pi. For any given set of

inequalities, we may write equations involving expected utilities and then

equate coefficients. A paper by Barron [1] provides two detailed examples

of computations involving these inequalities. Additional details concerning

sensitivity of decisions to probability estimation errors may be found in

6, 7, 23, 28, 29).
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3. Sensitivity to Variations in Utility-Single Attribute Utility Functions

for Decisions Under Uncertainty

In this section, we examine sensitivity relations to changes in

utility functions. This section will concern the single attribute case.

We will extend the results in this section to the scalar multiattribute

case in the next section. The vector multiattribute is considered in 12RI.

When considering utility function changes, it is convenient but not at all

necessary to consider that the same output value or utility function is

common to all alternatives and, therefore, represent different alterna-

tives by different probability density or mass functions.

For the continuous state case, we consider a utility function u(x)

and alternative ai defined by the associated probability density function

f i(x). For the finite state case we consider a utility function u(xi),
i = 1, 2, ..., n and alternatives aj defined by an associated probability

mass vector function P! which has n components, (pj)T = tpj(x) PJ(x 2)"'..

PJ(xn)] = [PO P3 ,..., P3 ].n) 1' 2

There are a variety of ways in which utility estimates can be stated,

possibly incompletely. Phong these are the following:

1. The decision maker may provide a complete estimate of the value

function v(x) and utility function u(x)

2. The utility function u(x) or value function may be completely

unspecified.

3. Only ordinal preferences are specified.

4. The value function may be specified but not the risk aversion

coefficient. In this case, the utility function is unspecified.

If the value and utility function are completely specified, the expected
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utility of each alternative may be computed and a sensitivity analysis

similar to that of Section 4 conducted to determine the potential

of a likely decision switch due to utility and value function elicitation

errors. If the value function is cumpletely

unspecified, then the decision maker is inchoate and there is virtually

nothing that car, be done to aid the decision maker except through proce-

dures that will enhance the value coherence of the decision maker.

Much information concerning alternative option preferences can be

obtained from just an ordinal ranking of preference for outcome states.

In the sequel we will assume that the decision maker can always express

an ordinal preference for the value of event outcomes of the form V(Xl)4

v(x2) ., VX)

When ordinal preferences among event outcomes can be elicited, and

when probabilitic estimates of occurence of these states can be obtained,

then concepts of stochastic dominance can be used to determine bounds on

alternative preferences. And if values but not utilities are specified,

then it will often be possible to specify risk aversion coefficients which

bound alternative preferences. We will illustrate each of these claims

by means of a simple example. Prior to doing this, however, it is

desirable to establish some fundamental concepts concerning stochastic

dominance 129].

We say that alternative ai is preferred to alternative aj whenever

the expected utility of alternative a is greater than that for alternative

aj. In symbols, we have if ai a j

f" f (x) u(x) dx > F fj(x) u(x) dx (3.1)

-9-



where f.(x) is the probability density function for the event outcome, x,

associated with alternative a'; and u(x) is the utility of the outcome

states. We wish to provide for a value function v(x) and will restrict

this, for convenience to the interval [0, 1]. The value function is not

necessarily a monotone function of the outcome states, x. The utility

function, however, should be isotone in v. Thus it is convenient to

rewrite Eq. (3.1) as a' . aJ if

f (v) u(v) dv f f (v) u(v) dv (3.2)

0 0

where we realize that the utility function is written as u[v(x)] but

where we delete the x symbol for convenience.

Stochastic dominance concepts are based upon the imposition of a series

of increasing constraints upon the form of the utility function u(v). The

most trivial assumption is that utility is a monotone increasing function

of increasing value. Thus we require du(v)/dv = u'(v) > 0. We now inte-

grate Eq. (3.2) by parts. Since we have

fo (v) u(v) dv = Pi(v) u(v) I - Pi(v) u'(v) dv
o 0

=I-f Pi(v) u'(v) dv

we obtain for Eq. (3.2)

l LPI(V) - Pj(0) u'(v) dv < 0 (3.3)

Without specification of u(v) but with specification that u'(v) > 0, we see

that the inequality of Eq. (3.3) will be satisfied if and only if

-10-



Pi(v) <Pj(v) Vv C[O, 1] (3.4)

With the inequality holding for at least one i. This is the requirement for

first order stochastic dominance. When the inequality nf Eq. (3.4) holds we

say that ai dominates a3 by first order stochastic dominance or at  a .

We can rewrite the expression for the probability mass function

Pi(vk) = f fi(v) dv

0

in terms of discrete state probabilities Pi(v ), t =1,2,..., k as

kPi(Vk = P(v)

If, in addition to requirinq monotonicity of the utility function, we also

require risk aversion;then we impose the further requirement that d
2u(v)/dv2=

u"(v) < 0. We integrate Eq. (3.3) by parts to obtain

u'(l) r(l) - f r(v) u"(v) dv _ 0

0

where

r(v) = fV (Pi(a) - P.(C)I da

To satisfy this requirement for u'(1) >0 and u"(v) _ Owe must require

r(v) < 0 in the interval 0 to 1. Our requirement for what is called

second order stochastic dominance becomes, therefore,

fov  P.( (a)] da < 0, Vv d[O, l (3.5)

For the finite state case we replace Eq. (3.5) with

k
T Pi(ve) - P (ve) (vt+1 - vt O, Vk c[2, n] (3.6)

with the inequality holding for at least one k.

An excellent discussion of stochastic dominance concepts is presented in the

chapter by Fishburn and Vickson in (29].

-11-



In the general case we can write the requirement for kth order

stochastic dominance of alternative a over aj  a a , as

rk(v) < 0 Vv r-(0,11 (3.7)

where

rk(v) l rk.1 (a) d

r1(v) = Pi(v) - P (v)

Satisfaction of Eq. (3.7) will insure, for increasingk, various increasing

requirements on risk aversion of the form u (v) 1 0, u"(v) < 0,..., (-I

uk (v) < 0.

A particularly interesting case occurs for k = =. The utility curve

for infinite risk aversion is given by u(v) = 0, v = 0 and u(v) = 1 Yvc(O,l].

Generally, it will be relatively easy to determine requirements for infinite

order stochastic dominance! Since the strength of the dominance relation

increases with increasing order, we can use this concept to advantage,

especially in the multiattribute case, We note that we

will be able to determine first order dominance, and infinite order dominance,

for many discrete state problems with only ordinal event outcome preference

information. Value preference bounds may be determined from ordinal preference

information from higher order stochastic domination concepts. This requires

the solution of linear programs, much the same as those of Eqs. (2.12) through

(2.14) 127-2%1.

Mean variance dominance, or expected value dominance, is a concept

that has often been used, especially in capital budgeting efforts. Alternative

a dominates alternative aJ in terms of expectation or mean value domination

if it has a greater expected value such that

*We can also compute, with relative ease, the expected utility for the modi-
fied infinite risk aversion case where u(v)=O, Vv ct0, vi( and u(v)=l,Vvt J

lJ i



a vPi(V) dv> vpj(v) dv-a (3.8)
0 o dv I

Alternative ai dominates alternative ai in terms of variance if the variance

associated with alternative I is less than that associated with alternative j, or

2 f0  p"(v)dv -a v2 = (3.9)

0 lv0PidVda. 2  2

When an alternative dominates another alternative in both expectation

and variance, it is said to dominate it in an EV domination sense. Generally,

domination in either expectation or variance is not necessarily meaning-

ful. And even EV domination is a less valuable concept than the various

stochastic dominance concepts in that one can easily configure problems

for which a non preferred alternative, that is one either stochastically

dominated by another alternative or with a lower expected utility than

another alternative, may dominate another alternative in an EV domination

sense [281. Thus the EV domination concept must be used with caution.

As an example of sensitivity calculations which use stochastic domi-

nation concepts, we consider the problem posed by Table 3.1.
statex x2 , x3X

v(Xl)=O v(x)=O.2 v(x3 )=O.5 v(x 4 10.7 5 v(x5)=l.0Al ternati ve_____________________

a1 0.25 0.25 0.25 0.25 0
a2 0 0.25 0.25 0.25 0.25

a3  0.15 0.15 0.20 0.25 0.25

a04 0.20 0.80 C 0 0

a5  0.50 0 0 0 0.50
a6 0 0 1.0 0 0

Table 3.1 rpbability of Occurrence of Various Event Outcome States
fshownalso are cardinal values, which are used in some
calculations)

For first order stochastic dominance we have, from Eq. (3.4), the first

order stochastic dominance reachability matrix and digraph [21] shown in

Figure (3.1). We note that we need only use the ordinal preferences infor-

mation among state values to determine this domination relationship.

-13-



We must know cardinal values in order to use second and higher order

domination relations, however. Bounds on these values can be utilized, and

we can consider multivariate multiattribute outcomes,

as discussed in [271, t281 and L29J. Unfortunately, this requires resolution

of a number of linear programs and this can be computationally rather

unattractive. If we use the cardinal values specified in Table 3.1, it is

a simple matter to use Eq. (3.5) or Eq. (3.6) to obtain the reachability

matrix and minimum edge digraph shown in Figure 3.2. We note that first

order stochastic dominance insures second order stochastic dominance.

Thus, there is no need to determine dominance for the dominated relations

of Figure 3.1. From Figure 3.1 we see that the only possible dominance

relations which we need check are

a1 vs a
4, a5 , a6

a2 vs a
5, a6

a3 vs a , a6

a4 vs a
5

a5 vs a6

From these candidate relations we determine that

a 1 a 2 a5 a3 a5 a6 a5

and these are, of course, shown in Figure 3.2.

For infinite order stochastic dominance we easily see, from Table 3.1,

that

a2, a6  . a3  Ma4  t.a1 ,.La
5

and this dominance pattern is illustrated in Figure 3.3. This dominance

digraph indicates that the best two alternatives are a2 and a6 ; Just as

did the second order stochastic dominance effort. Butinfinite order sto-

chastic dominance results, effectively, in a maximization of the probability

that the alternative selected will result in other than the minimum return.

*Stochastic dominance of order n guarantees stochastic dominance of order
greater than n.

-1 4_



It can be a rather pesimistic criterion, therefore. It may well turn out that

alternative a3 is preferred to alternative a6 for a more realistic utility function.

We next examine EV domination and easily establish the results

shown in Figure 3.4. From this figure we indeed see that domination

based on expectation only is a poor indicator to use for choicemaking.

Although the EV dominance digraph shown in Figure 3.4C is slightly

different from that obtained using the second order stochastic domination

results, it does indicate that the best three alternatives are a2 , a3 , a6.

To determine the final choice alternative we might assume a standard

exponential relationship, expressing constant risk aversion r, to relate

utility and value. Here we will use

u(v) I - e r

1 -
r

The expected utilities for alternatives a2 , a3 , a6 are easily determined

for various r as shown in Figure 3.5. There is no way, of course, that a3

can be the preferred alternative since it is dominated by a2 . a6  can be

either the most preferred, the second most preferred, or the third most

preferred alternative depending upon the amount of risk aversion.

Figure 3.5 indicates transition points where the various optimum decision

alternatives change.

-15s-



4. Sensitivity In Scalar Multiple Attribute Utility Analysis

Much contemporary emphasis has been placed on the evaluation of

alternatives using multiple attribute utility theory. The numerical

utility that results from use of multiattribute utility theory depends

upon the structure of the multiple attribute utility function, the scaling

coefficients within this structure, and the individual single attribute

utility functions which are aggregated to determine the multiple attribute

utility functions.

Flshburn [8,9] has considered approximations of scalar multiattribute

utility functions in which u(x) is a continuous real valued scalar cardinal

utility function and v(x) is an approximation for u(x). A number of

approximations to u(x) of the general form

k
v(x) Z v(xI 9 x2 .. x = E fl (xI) f2 (x2 )... fn (xn)

are considered. A distance metric in the form of the uniform norm

D(u, v) = sup I u(x) - v(x)l

is minimized. Among the results of these efforts, the following are especially

significant:

1. An additive utility function u(x) can be approximated to arbitrary

closeness by the multiplicative form

n
v(x) = H q(xi)

l=l

2. If u(x) is multiplicative, then there is a lower bound on the

distance between the actual utility and an additive approximation

One of the interesting conclusions of this effort is that simple additive

approximations may function as well as the more complicated multiplicative

.1
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approximations for cases in which the true utility function, u(x), is

neither multiplicative nor additive.

Much effort has been devoted to parameter sensitivity in determinis-

tic additive models. Among the most useful results obtained from these

studies is the indication that differential weighting of attributes is

often not necessary and that equal weighting will perform essentially as

well when all attributes have a high positive correlation with each other.

Leung [14) provides a survey of much of this work with a number of

references to contemporary 1 terature.

Among the more useful of sensitivity type results that can be

established for mu'itattritute decisionmaking under certainty are various

types of dominance results for the case where attribute scores, in the

range 0 to 1, can be established for each alternative. In the most

unspecified case nothing is known about the n weights for an assumed

linear multiattribute utility function except that

wi >0, 1 = 1, 2,..., n (4.1)

n
i w1 =1 (4.2)
i-1

1=1 u(aj )  wTu J - n 1) n w ui (4.3)

Ifit turns out that uI > u V i, with the inequality holding for

at least one i, then we easily see that alternative j must have regardless

of tie weights, a greater utility, u(a ), than alternative k. We say that

a1 oominates ak. If we nave, for example,

uI - 0.2 w1 + 0.2 w2

u2 a 0.5 w1 + 0.2 w2

-17-I



U3 a 0.3 w1 + 0.2 w2

u4  .Sw 1 +-0 w 2

then we see that a2 L a1, a2 L a3, and a2 L a4 for any w1 and

w2 subject to Eqs. (4.1) and (4.2). Figure 4.1 Illustrates these

four utilities and the associated dominance relations. We see from this

figure that there is no dominance of alternative 3 by alternative 1;
nor is there dominance of alternative 3 by
alternative 4. Yet we see that there are no values of the weights

such that a3 is preferred to a1 and a4 . We may establish this fact

by noting that the requirements for a3 I a1, which is w1 > w2, and

a3 L a4, which is w2 > 2w1, are inconsistent.

In the general case where utilities are defined by Eq. (4.3) and

the constraints of Eqs. (4.1) and (4.2) hold, we can show that alterna-

tive k will be dominated by a mixed strategy of the (m-l) remaining

alternatives if there is a non zero (positive) solution J to the linear

programming problem

m k
min Z d (4.4)
1=1

wt > 0 , i - 1,2,..., n

n
E w1 "1
i

dk > 0, j " 1,2,..., k-l, k+l,..., m (4.5)

E - ) + d 1_ 0, J-1,2,..., k-l, k+l,..., m (4.6)
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When we compare alternative 3 with a mixed strategy of alternatives

1 and 4 we see that the foregoing relations become

J= min(d3 + d3 )

W 1  0

w2> 0

wI + w2 = 1

d3> 0

d3> 0

.1 w1 - .1 w2 + d3 > 0

-0.2 w1 + 0.1 w2 + d3 > 0

The solution to this linear programming problem is

o .1-0.2w V W .

d3  = 0.3 w1 - 0.1 W1 > 0.33

We see that there is a non zero J over the entire range of w1 and thus

note again that alternative 3 is dominated by a mixed strategy of

alternatives 1 and 4.

" In many cases it will be possible for the decisionmaker to express

ordinal weights, or bounds, on the weights w iin the form

w 1 w2 1 "' wn >0 (4.7)

Suppose also that it turns out that

Iu j j



U j k + En

2 2 2

3 3k

.1k

n kn

u E WI U = wi(ui + - 11) (4.9)
1=1 +I=

where co = 0. We can write, by changing the summation index,

n n-i
E wI Ci.I = :0 wi+l i

such that Eq. (4.8) becomes, using Eq. (4.3),

i k n-1

nimu c t (w, - wi+ 1) + n Wn

Since we know that ci 10 and wI > w+ 1 >_ 0, we have established the fact

that if the equalities of Eq. (4.8) hold, we must have aJ  . a' regardless

of the value of the weights. Equation (4.8) is not in the form most

suited for actual use and can easily be rewritten in terms of the

cumulative difference inequality

m m
E . > u k m - 1929..., n (4.10)
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which is in a form quite suitable for actual use.

For the four alternatives and utilities considered earlier in

this section we still have a2 )_ a1 , a2 k a3 and a2 j_ a4 . We

also have a4 _ a3 , a3 L a1 , and the implied transitive preference,

a4 P a1 as well. In this particular case, specifying an ordinal

scale for the attribute weights has completely ordered the (dominance)

preference relationship. As indicated in Figure 4.2, the imposition

of the constraint w1 > w2 simply eliminates the right half of the

space in Figure 4.1 where w2 > 0.5.

Even though alternative k may not be dominated by alternative J,

it may or may not always have a lower utility than the mixed strategy of
alternative i or
alternative j. For example in

u5 = 0.6 w1 + 0.4 w2

u6 = 0.3 w1 + 0.9 w2

u7 = 0.7 w1 + 0.2 w2

we see that alternative 5 is not dominated by alternative 6 or alterna-

tive 7 if w1 >_w 2.* However in order to have a5 L a6 and a5 L a7 we

must have

w1 > w2

0.6 w1 +0.4 w2 > 0.3 w1 +0.9 w2

0.6 w1 +0.4 w2 > 0.7 w1 +0.2 w2

or

1.67w2 .1 w1  2 w2

*If, W2 > w1 then alternative 6 dominates alternative 5 as can be shown.
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or, since w2 = 1 -w

5/8 < w1  2/3

S 7
Thus, dominance of a5 over a and a is not guaranteed except over a small

range of wI. On the other hand if we have

8=0.8 w1 + 0.1 w2

then we will have a5 J a6 and a5 " a8 only if

1.67 w2  _ w, < 1.5 w2

and this is in consistent. Thus alternative 5 can not be the alternative

with the highest utility in that the utility of alternative 6 or alter-

native 8 is always greater than this. Figure 4.3 illustrates preference

relationships among alternative 5, 6, 7, and 8 as obtained here.

For the general case where the attribute weights are ordered as

in Eq. (4.7), it turns out that alternative k will be dominated by a

mixed strategy of the (m-l) remaining alternatives if there is a non

zero solution J to the linear programming problem

m k
J mln r d (4.11)

JulI-
i~k

wI . w2  .. __w n >_ o

n
E w i l
1-I

d k > 0, j 1,2,..., k-l, k+l,..., m

Swt(uk - uk) + d k_> 0, j = 1,2,..., k-l, k+l,..., m
1-1 j
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There have been a number of sensitivity studies of multiattribute

utility in the psychological literature [3-5, 24, 30] and the effect of

errors, including cognitive bias induced errors, upon risk and uncer-

tainty estimation [22]. A major goal of this psychological research

is, a theory of errors. This will allow determination of the effects

of poor structuring of decision situation models and poor elicitations

of values and uncertainties and the aggregation of these into decision

rules. A to be hoped for achievement of all of this research is a

theory that explains and clarifies descriptive and prescriptive approa-

ches to substantive and procedural judgment and decision processes such

as to enable the design of more efficacious systems for planning and

decision support. In this section we have indicated how sensitivity

results can be used to this end, and how sensitivity analysis can be

used to reduceoften considerably, the needed number of precise weights.

This should generally reduce the potential cognitive stress involved

in decision analysis efforts. Some rather general results concerning

partially identified parameters and associated sensitivity analysis

for planning and decison support are given in [28].
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5. Sensitivity and the Structure of Decision Situation Models

Sensitivity analysis results can be used to guide the structuring of

decision situations. This has been the thrust of recent efforts by

LealPearl, and Saleh [13, 16] ; Merkhoffer et. al. [15], and Rajala and

Sage [17-20]. Of interest also is the related work of Chen and Jarboe [2];

Haruna and Komoda [10];and Howard, Matheson, and North [11].

Use of sensitivity measures to guide the structuring of decision trees,

and related structures such as fault trees, requires the availability of

preference or utility measurements for event outcomes and uncertainty

measures over events. There are four concepts of value in structuring

decision trees using sensitivity concepts:

(1) sensitivity differential of a node

(2) relative sensitivity differential of a node

(3) expected value of resolving residual uncertainty

(4) decision sensitivity to outcome variable uncertainty resolution

The sensitivity differential of a node, A, is the change that must occor in

the value of that node in order to cause a change in the currently best initial

decision. In Figure 5.1 for example, a decrease in the value, or utility,

v(x, d) at node B of more than 0.95 units will cause the best initial decision

to switch from a1 to a3. It would require a decrease of -0.125 units in

the value at node E, for example, for this to happen. A recursive relation

IA(i-l) node i is an event node
A( ) = Pi

/ A(i-l) + vi_1(x) - vi(x),node i is a decision node

may be determined [13]. Here A(i) is the sensitivity differential associated

*We use the value symbol for convenience. All of the discussion in this section
applies to utilities as well as to values.
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with node i and A(i-l) is the sensitivity differential of the preceeding

node. vi(x) and vil(x) refer to the expected values at nodes i and i-l.

The relative sensitivity differential of node i is given by

VM
s ((i)

where cr(i) is the anticipated change in the value at node i which may

result from further refinement. Unfortunately there is no general way to

determine av(i) except by elicitations from the decision maker. It is

vreasonable that 0Ov(i) is linearly proportional to vi(x) since greater

inaccuracies typically are associated with larger values.

The expected value of resolving residual uncertainty (EVRRU) may be

easily computed [15]. We assume that, in Figure 6.2, the current best

decision ista1 , a4j The following results are obtained:

1. The EVRRU is zero if we consider a node, such as node 1, in which

the node is along a path leading from the current best initial

decision, a1 , but not the best current decision [a1 a4J.

2. The EVRRU is zero if we consider a node such as node 2, in which

the node is along a path leading from the current best initial

decision, al , but where

Pi [v(x, a1, a4) - v(x, a1, a)1 < v(x, a) - v(x, a2)

3. For case 2, the EVRRU is given by

2 2EVRRU = PiP f [v (x) + A- m,]

where f = prob [v* 2 (x)< v2 (x) + AJ

m= E (v*2(x)l v*2 (x)<_ v(x) +A]

if the inequality in case 2 is reversed.
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4. If we consider node 3 which is not along the path leading from the

best initial decision, then we have

EVRRU = - PL Pm g [v3(x) +A - m*]

where g = prob [v* 3 (x) > v3(x) + AJ

m* = E [v*3 (x) v*3(x) > v(x) +A,

Rajala and Sage [181 have developed a 9 step tree expansion structuring

procedure based upon these sensitivity relations. Steps in this procedure

are:

1. Identify the initial decision alternatives and represent them by

branches emanating from the first decision node.

2. Identify state variables of importance in determining the value of

each alternative.

3. Elicit a value or utility function.

4. Encode provisional probability distributions on each state variable

for each alternative course of action

5. Using the value model compute probability distributions, f and g,

on the rollback value at the terminal nodes and each interior node

using the state variable distributions.

6. Determine the next appropriate node for expansion. Either the

EVRRU and/or the relative sensitivity, s ri), is appropriate as an

aid in this determination. If either, or both of these are below

some threshold for all remaining nodes we stop expansion of the tree.

Otherwise we go to step 7.

7. The sensitivity of the current best initial decision to uncertainty

resolution in each state variable is determined. Multiattribute
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utility functions are especially appropriate to aid in this task.

8. We verify that the best course of action may be affected by incor-

porating factors determined in steps 6 and 7 into the decision

model. Often this can be accomplished by determining whether

the event probability required for a decision switch converges

to an amount less than or equal to the amount elicited from the

decisionmaker. If it does we go to step 9. If it does not we

return to step 7 and repeat this step until we are convinced that

no switch in the decision is feasible.

9. Incorporate relevant features in the decision tree to obtain a

new and improved representation of the decision situation. We

return to step 4 and continue the process until the EVRRU and/or

Sr(i ) are sufficiently low at all remaining nodes such that we

conclude that no further improvement in the decision situation

structural model is feasible.

We shall limit our discussion concerning the value of information

measures to a primary decision situation that involves only a single

decision d whose uncertain outcomes are represented by the discrete state

variables (x1,..., Xn). The uncertainty on this state vector x is encoded

in the distribution f(x) and the value of the outcome is measured by the

value model v(x, d).

The purpose behind considering the possibility of acquiring addi-

tional information, given this complete model of the primary decision

situation, is to determine the worth of eliminating remaining uncer-

tainty on the state variables. An important quantity which establishes

an upper bound to the amount that the decisionmaker should pay to elimi-

nate all uncertainty on a state vector is the value of perfect information.
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If a clairvoyant, an individual capable of indicating the exact

outcome of an uncertain quantity, were to report to the decisionmaker

that a particular state vector x1 would occur, then the decisionmaker

could select the appropriate course of action d, that gives the

maximimum value, denoted by v(x , d,). However, since the decision-

maker does not know what x1 the clairvoyant would report, the value

that would be realized from a particular outcome must be weighted by

the probability that the outcome will be reported. The probability

that is assigned is just the prior probability, f(x ). To the

decisionmaker, the expected value of the decision situation with per-

fect information is

E[v(x, d.)] = E f(xi)v(xi, d.)

The well known expected value of perfect information, EVPI, which is a

measure of the upper bound the decisionmaker should be willing to pay

to resolve all uncertainty on a state vector x, is the difference between

the quantity determined in the equation above and the expected value of

the optimal course of action based only on information encoded from the

decisionmaker's prior knowledge and experience, that is

EVPI = E[v(x, d.)] - max E[v(x, d)]
d

- Z f(xt)v(xk, d,) - max z f(xi)v(xk, d)

i d i

The magnitude of EVPI can assist the analyst in determining the level

of effort to be directed toward identifying and organizing information

gathering decisions into the decision model. A lower magnitude of

EVPI generally warrants a lower level of structuring activity. These

methods provide a basis which allows the analyst to prompt the decision-

maker into identifying information gathering alternatives, with EVPI
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providing additional incentive to the decisionmaker. The expected

value of information from these methods is, of course, bounded above

by EVPI, assuming no structural modelling errors.

The information z obtained about the state vector x from an

information gathering alternative causes the decisionmaker's

experience and knowledge to change, and its effect may be completely

accounted for by a revision in the probability distribution on x.

The revised distribution on x is determined from Bayes' rule

f(zJ xc) fix)

f(xlz) 
=

f(z)

where the probability functions are appropriately defined. The expec-

ted value of information, EVI, is the difference between the optimal

course of action with additional information and the optimal course

of action without additional information. It is computed as

EVI = E [ max E{v[x, d(z, c zJ 1 - max E[v(x, d)]xd(z,cZ) d

= Z [ max E f(xlz) v[x, d(z, c z)1 f(z)
z d(zcz) z

- max z f(x)v(x,d)

d x

where d(z, cz) indicates the primary decision d is based on information

z obtained at cost cz . If EVI is positive, then the expected value of

the decision situation will increase when the secondary decision to

gather additional information is made. If EVI is negative, the expec-

ted value will decrease, reflecting that information costs more than it

is worth. If cz-O, then EVI cannot be negative.

Rajala and Sage [17-20] present several examples of these proce-

dures. These approaches are especially capable for use as structuring
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tools to determine parsimonious decision trees which are reflective

of the decisionmaker's perception of the decision situation. Also,

the approach provides a general method to use in "pruning" already

structured trees. Of particular interest, in this connection, would

be the ability to deal with multi parametric sensitivity issues [25].
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6. Conclusions

This paper has presented a discussion of contemporary efforts involving

error and sensitivity analysis of decision analysis algorithms for eval-

uation and choicemaking associated with planning and decision support. We

have examined sensitivity to probability estimation errors, sensitivity

to utility elicitation errors, sensitivity to variations in the structure

and parameters of multiattribute utility functions, and sensitivity to

variations in the structure as well as the probability and utility para-

meters. This structural sensitivity to expansion of the decision tree is

especially useful in that it provides an aid in the determination of par-

simonious models of decision situations.

Our recent research has also concerned a mixed scanning based planning

and decision support system which involves a vector multiple attribute

utility function 126, 271. In this approach, which is believed behaviorally

relevant, we intentionally avoid elicitation of attribute weights and only

elicit those weights which can be shown to be most beneficial in increasing

the domination pattern among alternatives. Sensitivity results of the type

obtained in this paper have been found useful in guiding the partial aggre-

gation of values. This results in a planning and decision support system

in which the attribute weight elicitation procedure is guided by an inter-

action process involving the Judgment and desires of the decision maker and

suggestions concerning the efficiency of value aggregation that are deter-

mined by sensitivity analysis approaches.
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Figure 3.1 Reachability Matrix and Minimum Edge Digraph for First Order
Stochastic Domination
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Figure 3.2 Reachability Matrix and Minimum Edge Digraph for Second Order

Stochastic Dominance.
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mean variance
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Figure 3.4 EV Dominance Results
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Orlando, FL 32813 Monterey, CA 93940

Dr. Alfred F. Smode Dean of Research Administration
Training Analysis and Evaluation Naval Postgraduate School

Group Monterey, CA 93940
Naval Training Equipment Center
Code N-OOT Mr. Warren Leis
Orlando, FL 32813 Human Engineering Branch

Code 8231
Dr. George Moeller Naval Ocean Systems Center
Human Factors Engineering Branch San Diego, CA 92152
Submarine Medical Research Lab
Naval Submarine Base Dr. A. L. Slafkosky
Groton, CT 06340 Scientific Advisor

Comnandant of the Marine Corps
Dr. James McGrath, Code 302 Code RD-1
Navy Personnel Research and Washington, D.C. 20380

Development Center
San Diego, CA 92152

Department of the Army
Navy Personnel Research and

Development Center Mr. J. Barber
Planning and Appraisal EQS, Department of the Army
Code 04 DAPE-MBR
San Diego, CA 92152 Washington, D.C. 20310

Navy Personnel Research and Dr. Joseph Zeidner
Development Center Technical Director

Management Systems, Code 303 U.S. Army research Institute
San Diego, CA 92152 5001 Eisenhower Avenue

Alexandria, VA 22333
Navy Personnel Research and

Development Center Director, Organizations and
Performance Measurement and Systems Research Laboratory

Enhancement U.S. Army Research Institute
Code 309 5001 Eisenhower Avenue
San Diego, CA 92152 Alexandria, VA 22333

CDR P. M. Curran
Code 604 Department of the Air Force
Human Factors Engineering Division
Naval Air Development Center U.S. Air Force Office of Scientific
Warminster, PA 18974 Research

Life Sciences Directorate, NL
Dean of the Academic Departments Bolling Air Force Base
U.S. Naval Academy Washington, D.C. 20332
Annapolis, MD 21402



Department of the Air Force Other Government Agencies

Dr. Donald A. Topailler Defense Technical Information Center
Chief, Systems Engineering Branch Cameron Station, Bldg. 5
Human Engineering Division Alexandria, VA 22314 (12 cys)
USAF AMIL/HES
Wright-Patterson AFB, OH 45433 Dr. Craig Fields

Director, Cybernetics Technology
Air University Library Office
Maxwell Air Force Base, AL 36112 Defense Advanced Research Projects

Agency
Dr. Erl Alluuisi 1400 Wilson Blvd
Chief Scientist Arlington, VA 22209
APHRL/CCN
Brooks AFB, TX 78235 Dr. Judith Daly

Cybernetics Technology Office
Defense Advanced Research Projects

Foreign Addresses Agency
1400 Wilson Blvd

North East London Polytechnic Arlington, VA 22209
The Charles Myers Library
Livingstone Road
Stratford Other Organizations
London El5 2LJ
ENGLAND Dr. Gary McClelland

Institute of Behavioral Sciences
Professor Dr. Carl Graf Hoyos University of Colorado
Institute for Psychology Boulder, CO 80309
Technical University
8000 Munich Dr. Miley Merkhofer
Arcisstr 21 Stanford Research Institute
FEDERAL REPUBLIC OF GERMANY Decision Analysis Group

Menlo Park, CA 94025
Dr. Kenneth Gardner
Applied Psychology Unit Dr. Jesse Orlansky
Admiralty Marine Technology Institute for Defense Analyses
Establishment 400 Army-Navy Drive

Teddington, Middlesex TWll OLN Arlington, VA 22202
ENGLAND

Professor Judea Pearl
Director, Human Factors Wing Engineering Systems Department
Defence & Civil Institute of University of California-Los Angeles
Environmental Medicine 405 Hilgard Avenue

Post Office Box 2000 Los Angeles, CA 90024
Dowanview, Ontario M3M 3B9
CANADA Professor Howard Raiffa

Graduate School of Business
Dr. A. D. Baddeley Administration
Director, Applied Psychology Unit Harvard University
Medical Research Council Soldiers Field Road
15 Chaucer Road Boston, MA 02163
Cambridge, CB2 2EF, ENGLAND



Other Oranizations Other Organizations

Dr. Arthur I. Siegel Dr. William Howell
Applied Psychological Services, Inc. Department of Psychology
404 East Lancaster Street lice University
Wayne, PA 19087 Houston, TX 77001

Dr. Paul Slovic Journal Supplement Abstract Service
Decision RseartA American Psychological Association
1201 Oak Street 1200 17th Street, N.W.
Eugene, OR 97401 Washington, D.C. 20036 (3 cys)

Dr. Amos Tversky Dr. John Payne
Department of .Psychology Duke University
Stanford University Graduate School of Business
Stanford, CA 94305 Administration

Durham, HC 27706
Dr. Robert T. Hennessy
HAS- National Research Council Dr. Baruch Fischhoff
JR #819 Decision Research
2101 Constitution Avenue, N.W. 1201 Oak Street
Washington, D.C. 20418 Eugene, OR 97401

Dr. M. G. Samet Dr. Leonard Adelman
Perceptronics, Inc. Decisions and Designs, Inc.
6271 Variel Avenue 8400 Westpark Drive, Suite 600
Woodland Hills, CA 91364 P. 0. Box 907

McLean, VA 22101
Dr. Meredith P. Crawford
American Psychological Association Dr. Lola Lopes
Office of Educational Affairs Department of Psychology
1200 17th Street, N.W. University of Wisconsin
Washington, D.C. 20036 Madison, WI 53706

Dr. Ward Edwards
Director, Social Science Research

Institute
University of Southern California
Los Angeles, CA 90007

Dr. Charles Gettys
Department of Psychology
University of Oklahoma
455 West Lindsey
Norman, OK 73069

Dr. Kenneth Hammond
Institute of Behavioral Science
University of Colorado
Room 201
Boulder, CO 80309
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4.

UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science
The University of Virginia's School of Engineering and Applied Science has an undergraduate enrollment

of approximately 1,400 students with a graduate enrollment of approximately 600. There are 125 faculty
members, a majority of whom conduct research in addition to teaching.

Research is an integral part of the educational program and interests parallel academic specialties. These
.. range from the classical engineering departments of Chemical, Civil, Electrical, and Mechanical and

Aerospace to departments of Biomedical Engineering, Engineering Science and Systems, Materials
.- Science, Nuclear Engineering and Engineering Physics, and Applied Mathematics and Computer Science.

In addition to these departments, there are interdepartmental groups in the areas of Automatic Controls and
Applied Mechanics. All departments offer the doctorate; the Biomedical and Materials Science
Departments grant only graduate degrees.

The School of Engineering and Applied Science is an integral part of the University (approximately 1,530
full-time faculty with a total enrollment of about 16.000 full-time students), which also has professional
schools of Architecture, Law, Medicine, Commerce, Business Administration, and Education. In addition,
the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others
relevant to the engineering research program. This University community provides opportunities for
interdisciplinary work in pursuit of the basic goals of education, research, and public service.
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